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Steady potential flow around a two-dimensional bubble with surface tension, either 
free or attached to a-wall, is considered. The results also apply to a liquid drop. The 
flow and the bubble shape are determined as functions of the contact angle p and the 
dimensionless pressure ratio y = (pb - p , ) / i p U 2 .  Here p ,  is the pressure in the bubble, 
ps = p ,  + i p U 2  is the stagnation pressure, pm is the pressure at  infinity, p is the fluid 
density and U is the velocity at  infinity. The surface tension v determines the dimen- 
sions of the bubble, which are proportional to 2afpU2.  As y tends to cx), the bubble 
surface tends to a circle or circular arc, and as y decreases the bubble elongates in the 
direction normal to the flow. When y reaches a certain value yo(/3), opposite sides of 
the bubble touch each other. The problem is formulated as an integrodifferential 
equation for the bubble surface. This equation is discretized and solved numerically by 
Newton’s method. Bubble profiles, the bubble area, the surface energy and the kinetic 
energy are presented for various values of@ and y.  In addition a perturbation solution 
is given for y large when the bubble is nearly a circular arc, and a slender-body 
approximation is presented for /3 N +r and y N yO(p) ,  when the bubble is slender. 

1. Introduction 
We consider the deformation of a two-dimensional gas bubble or liquid drop due to 

the steady potential flow of an incompressible inviscid fluid around it. We shall write 
‘bubble’ to mean either bubble or drop. The bubble is attached to a plane wall, 
meeting it at  the contact angle /3 (see figure 1). The case ,8 = &r represents half of a 
free bubble. The bubble is characterized by its pressure p b  and its surface tension v, 
while the fluid has density p, pressure p ,  at infinity and velocity U parallel to the wall 
at infinity. As we shall see, the shape of the bubble is determined by ~3 and by the 
dimensionless parameter 

Y = (pb-pco - $P u2)f BP u2. (1.1) 

The size of the bubble is proportional to the length 2 a / p U 2 .  
We shall formulate this flow problem as a boundary-value problem in $ 2 .  Then in 

9 3 we shall convert it into an integrodifferential equation, and in $4  present a method 
for solving this equation numerically. The method involves discretization, which 
converts the equation into a set of nonlinear algebraic equations. Then it employs 
Newton’s method to solve these equations. This procedure can be used for any values 
of /3 and y ,  and we have used it for various values of them. Some of the results obtained 
are shown in figures 2-8, and they are discussed in $ 7 .  

In  addition to the numerical results, we present two analytical results. In 95 we 
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V 

FIGURE 1. Sketch of the bubble and the co-ordinates. 

give a perturbation expansion for the bubble surface valid for y large. It shows how the 
surface deviates from a circular arc as y decreases from infinity. For the free bubble 
(/3 = $ 7 ~ )  the expansion is especially simple, and it agrees with the numerical results 
within five per cent for y > 10. This agreement is also a check on our numerical 
results. 

In  $ 6  we obtain the bubble shape approximately when the bubble is slender, by 
using a slender-body approximation for the flow. This result is useful for /3 N 47~ and 
y N yo(P), the value of y at which opposite sides of the bubble just touch one another, 
as is shown by comparison with our numerical results. This theory can also be used for 
a three-dimensional bubble, as we show. 

Another check on our numerical results is obtained by comparing them with the 
exact solution obtained by McLeod (1955) for the special case of a free bubble (/3 = in) 
with y = 0. The results agree to four significant figures. 

2. Formulation as a boundary-value problem 
Let us consider the steady two-dimensional potential flow of an inviscid incompres- 

sible fluid around a bubble within which the pressure has the constant value p ,  (see 
figure 1 ) .  We assume that the bubble is symmetric about they axis and that it makes 
the angle p with the x axis, which represents a rigid wall. The case P = 4. corresponds 
to the upper half of a free bubble. It is convenient to measure lengths in units of 
2a/pU2 and velocities in units of U .  Therefore we introduce the dimensionless potential 
and stream functions q5b and @b so that their dimensional counterparts are (2a/pU) $b 
and (2u/pU) @b. The constant b > 0 is to be chosen so that q5 = & 1 at the front and 
rear stagnation points, respectively. 

We denote the streamline along the wall and along the bubble by $ = 0. Then the 
flow region corresponds to the upper half (@ > 0 )  of the q5, $ plane. The bubble surface 
corresponds to the segment I q5 I < 1,  y i  = 0 of the @ axis. 

0. At infinity we require 
the velocity to be U in the x direction, so the dimensionless velocity is unity in the 

We shall seek x + iy as an analytic function of q5 + i@ in @ 
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x direction. Therefore x + iy must tend to b($ + i$) at infinity. On the bubble surface 
the Bernoulli equation and the pressure jump due to surface tension yield 

Here q is the flow speed and k is the curvature of the bubble surface, counted positive 
when the bubble is on the concave side of the surface. In dimensionless variables this 
becomes 

where y is defined in ( 1.1). 
The equation of the bubble surface is obtained from x(Q + i$), y(q5 + i$) by setting 

$ = 0 and restricting q5 to the range I $ I < 1.  We require that the end points of the 
surface be on the wall and be symmetric about the origin, and that the rest of the 
streamline $ = 0 be on the wall. These conditions yield 

q 2 = k - y ,  < l ,  $ = O .  (2.2) 

y($) = 0 > 1, x( - l )  = -%(I) .  (2.3) 

The condition that the contact angle be /3 yields 

In (2.4) the limit is the one-sided limit as I $ I increases. Furthermore, in (2.2) k is the 
curvature of the curve x(#), y($). This completes the formulation of the problem of 
determining the constant b and the analytic function x + iy. This function must tend 
to b($+ i$ )  at infinity in $ 2 0, satisfy (2.2) and (2.3) on $ = 0 and satisfy (2.4) at 
$ = O , # =  k l .  

3. Reformulation as an integrodifferential equation 
It is convenient to reformulate the boundary-value problem as an integrodifferential 

equation by considering x$ + iy$ - b. This function is analytic in the half-plane $ 2 0 
and vanishes at infinity. Therefore on $ = 0 its real part is the Hilbert transform of its 
imaginary part. From (2.3) we have y# = 0 on $ = 0, I $ 1  2 1 and therefore the 
Hilbert transform yields 

The assumed symmetry of the bubble requires that y( - #) = y(q5), so we can rewrite 
(3.1 ) in the form 

Next we express the boundary condition (2.2) in terms of x$ and y$, noting that 
q2 = b2(x: + y$l. Then (2.2) becomes 

22-2 



676 J. -M.  Vanden-Broeck and J .  B. Keller 

Now (3.2) and (3.3) together constitute a nonlinear integrodifferential equation for 
y$ (4) in the interval 0 < q5 < 1. The symmetry of the bubble implies that 

Y$(O) = 0. (3.4) 

The additional condition (2.4) at 4 = 1 completes the formulation of the problem for 
yi and b. 

This formulation of the problem, and the numerical method used to solve it, follows 
closely the work of Schwartz & Vanden-Broeck (1979), Vanden-Broeck & Schwarte 
(1979) and Vanden-Broeck & Keller (1980). 

4. Numerical procedure 

independent variable a in place of q5 by the definition 
To solve the problem (3.2)-(3.4) and (2.4) we find it convenient to introduce the new 

4 = 1. -an119. (4.1) 
This particular change of variable is chosen because near 4 = 1, ~ ~ ( 4 )  behaves like 
( 1  - which is singular since p < n. The derivative Y ,  (a) of the new function 
Y ( a )  = y[$(a)] is regular at  a = 0, which corresponds to 4 = 1. Therefore we rewrite 
(3.2)-(3.4) and (2.4) in terms of a, Y(a)  and X ( a )  = z[4(a)]. 

Next we introduce the N mesh points aI defined by 

I-1 
a I - N - l  -- I = 1 ,  ..., N .  

We also define the N corresponding quantities 

Y ;  = Y,(aI), I = 1, ..., N .  (4.3) 

It follows from (3.4) that Y g  = 0, so only the first N - 1 of the Y ;  are unknown. We 
shall also use the N - 1 intermediate mesh points aI+* given by 

aI++ = *(aI + C L ~ + ~ ) ,  1 = 1, . . . , N - 1. (4.4) 

We now compute X,(az+$) in terms of the Y; by applying the trapezoidal rule to 
the integral in (3.2) rewritten in terms of the new variables, with the mesh points a,. 
These points are locally symmetric about aI++ and the quadrature formula is also 
symmetric. Therefore the contributions from the neighbourhood of the singularity 
cancel out, permitting us to evaluate the Cauchy principal value integral as if it were 
an ordinary integral. Then from the X ,  (a,+$) we compute Xaa(aI++) and from Y;  we 
compute Y,(a,+$) and Y=, (E~+&) .  In  all three cases we use four point difference and 
interpolation formulas, and obtain the results in terms of the Y;. 

Next we substitute into (3.3), rewritten in terms of a, the expressions so obtained 
for X,, X,,, Y ,  and Y,, at the N - 1 points aI++ I = 1 , .  .., N - 1. In  this way we 
obtain N - 1 nonlinear algebraic equations involving the N unknowns Y;, I = 1, . . . , 
N - 1 and b .  The Nth equation is obtained from (2.4) a t  q5 = 1, rewritten in terms of 
the new variables, by using a three-point Lagrange extrapolation formula to evaluate 
the left-hand side. 

The N nonlinear equations are solved by Newton’s iteration method. For each 
value of /3 and some large value of y, the initial approximation for the bubble surface 
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-0.3 -0.2 -0.1 0 0. I 0.2 0.3 

FIGURE 4. Bubble profiles for p = 120" and three values of y. The vertical scale is the same 
as the horizontal scale. At y = y o  = -1.6 the bubble touches itself a t  about the distance 
y = 0.35 from the wall. 

is taken to be the appropriate circular arc. Iterations are continued until the solution 
converges within the specified tolerance. This solution is then used as the initial 
approximation for the next smaller value of y, and so on. After a solution for the Y;  
and b converges for given values of ,/? and y ,  the surface profile X ( a ) ,  Y(a)  is obtained. 
This is done by integrating X ,  (aI+*) and Ya(aI++). 

We have used this method, usually with N = 40, for /3 = 45", 60", 75", 90" and 120'. 
Some of the resulting bubble profiles are shown in figures 2-4, respectively. For each 
B, the values of y lie in the range. co > y > yo (p), where yo (B) is the value of y at which 
opposite sides of the bubble touch each other at  one point. For p < 90" this point of 
contact is on the wall, while for /3 > 90' it is off the wall. The numerical scheme can be 
used with y < yo(B) but it then yields a surface which crosses itself, so the fluid regions 
are overlapping and therefore the velocity is multiple valued. These solutions are not 
admissible as solutions of the physical problem. The way to obtain physically accept- 
able solutions for y < yo (p)  is described in § 7. 

To test the numerical scheme, we applied it to the free bubble (/3 = QT) with y = 0. 
For this case an exact analytic solution for the bubble surface was obtained by McLeod 
(1955). This solution gives for the ratio of the long axis of the bubble to the short axis 
the value 5.5. We used our numerical method in this case with N = 30,40 and 50; the 
respective values of the axis ratio were 5.502, 5.5006 and 5.5002, in good agreement 
with the exact result. Furthermore the entire bubble surface obtained numerically was 
indistinguishable from the exact result within graphical accuracy. 
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Another test of the method was a comparison of the numerically computed bubble 
surface for the free bubble (B = in) with the perturbation result of $ 5 .  For y > 10 the 
two results for the bubble radius as a function of angle differed by less than five per cent. 

From the numerical solution we can calculate not only the shape of the bubble 
surface but also the kinetic and potential energies T and V .  The potential energy V is 
the energy of the bubble surface, which is equal to the surface tension a times the 
length of the surface. In  dimensional variables 

The kinetic energy T is the kinetic energy of the fluid in a frame of reference in which 
the fluid at infinity is at rest. Thus it is the kinetic energy of the fluid when the bubble 
is moving through it, and is given by 

T = ( 2 ~ ~ / p U ~ ) / / [ ( u -  1 ) 2 + ~ 2 ] d ~ d y .  (4.6) 

Here u and v are the dimensionless x and y components of velocity of the fluid, and 
the integration extends over the fluid region. 

The integral over the fluid region in (4.6) can be converted into an integral over the 
bubble surface by first restricting the integration to the domain Dad outside the bubble 
and inside the rectangle -a  < x < a, 0 < y c d .  Later we shall let a and d tend to 
infinity. Thus we can write T as follows, and then rewrite it using the facts that 
u2 + v2 = b2a(#, $) /a(x ,  y )  and that u = xi b-'(u2 + v2) : 

, 

(4.7) 1 !P(2a2/pU2)-1 = li m / [ ( u 2 + v 2 ) - 2 u + 1 ] d x d y  
a, d+w Dad 

a, d-m /Dad 1 = lim [bzd# d$ - 2 b ~ i  d# d$ + d x  dy] .  

In the second line of (4.7) the integral of d x d y  is just 2ad - A where A is the area of the 
bubble and 2ad is the area of the rectangle. The integral of b2d# d$ is b2 times the area 
of the image of Dad in the 4, $ plane, which tends to the area of the rectangle as a and d 
tend to infinity. 

By using these facts in (4.7) and using the Cauchy-Riemann relation xi = y s ,  we 
can write T in the form 

T(2a2/pU2)-1 = lim [4ad-A - 2bf j y * d $ d # ] .  (4-8) 
a. d - m  Dad 

The integral over $ yields y at the upper limit, which is d,  minus y a t  the lower limit, 
which is zero except on the bubble. Then the integral of d with respect to 4 yields 
- 4ad. Thus (4.8) becomes 

In the last line we have used the dimensionless integral for A 
formula 

-1 

which occurs in the 

(4.10) 
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FIGURE 5 .  Values of the kinetic energy T in units of 2u2/pU2 as a function of y for five values 
of p. The dashed ciirve corresponds to the family of bubbles having one point of contact with 
the wall. 

V 

1 1 

5 1 7 2  
- 1  

FIQURE 6. Values of the potential energy V in units of 2a2/pU2 as a function of y for five values 
of p. The dashed curve corresponds to the family of bubbles having one point of contact with 
the wall. 

The integrals in (4.5), (4.9) and (4.10) can be eva,luated by the trapezoidal rule, 
using the previously obtained values of the quantities in the integrands. We have 
evaluated them for different values of /3. For each /3 the results for T ,  V and A are 
shown as functions of y in figures 5 , 6  and 7 respectively. The dashed curve corresponds 
to the family of bubbles with one point of contact on the wall, discussed in $ 7 .  
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FIGURE 7. Values of the bubble area A in units of ( 2 ~ / p U ~ ) ~  as a function of y for four values 
of p. The dashed curve corresponds to the family of bubbles having one point of contact with 
the wall. The ordinate is also equal to the square of the Weber number W ,  defined by W 2  = 
A ( p U a / 2 ~ ) ~ .  

5. Perturbation expansion for y large 
As y --t co we conclude from (2.2) that  k - y ,  so the bubble surface tends to a circular 

arc of dimensionless radius y-l. The angular width of this arc is 2(7r -p )  since it must 
make the angle p with the x axis a t  each of its endpoints. We wish to use this result as 
the first term in a perturbation expansion of the bubble surface in powers of y-l. To 
this end we introduce polar co-ordinates r ,  O with origin on the y axis a t  y = - y-' 
and with 0 measured counterclockwise from this axis. To simplify the analysis 
we assume that the bubble is symmetric about this axis (see figure 1). Then we seek 
the bubble surface in the form r = r(O, y )  with 8 in the range 18 I < 8(y).  The leading 
terms in r(O, y )  and &y) are given by the circular arc result so we write 

r (0 , y )  = y-1+y-2r1(O)+... , (5.1) 

( 5 . 2 )  

P(O,Y) =Po(@+... . (5.3) 

O(y) = 7r-/3+y-101+ ... . 
We also write the flow speed q(8, y )  in the form 

To determine r l ( 0 )  and O1 we shall use (2 .2) ,  (2.4),  the condition that the end points 
ofthe bubble surface lie on the x axis, and the symmetry condition r'(0, y )  = 0. These 
conditions are 

qz  = (? + 2r'2 - rr")(r2 + r'2)-9 - y ,  (5.4) 



682 J . -M.  Vanden-Broeck and J .  B. Keller 

We now substitute (5.1)-(5.3) into (5.4)-(5.7) and obtain from the coefficients of 
the leading power of y in each equation the results 

r;V) + rl(8) = - q V ) ,  (5.8) 

0, = -r i(m-p), (5.9) 

rl (m - 8) cos (n-/?) = 8, sin (m - /?), (5.10) 

?$O) = 0. (5.11) 

Upon eliminating 8, and solving the resulting equations for rl (0) we obtain 

q:(z)sin(O-z)dz-sec2P qg(z)sin(z+2/?)dzcos8. (5.12) 

Then 8, is given by using this result in (5.9) or (5.10). 
The function qo(0)  in (5.12) is the speed of the flow past a circular arc attached to a 

plane. It is given by qo(8) = yI 88g50(y-1, 8) I in terms of the potential g50(r, 0). By 
using the K&rmBn-Trefftz transformation we find 

(5.13) 

In the special case of a free bubble (p = in) we find by using (5.13) that qo(8) = 

2Icos01 and then (5.12) yields r,(B) = -t(l +sin28). Now (5.9) gives 8, = 0, which is 
to be expected since in this case &y)  = in by symmetry. Finally (5.1) becomes 

r (8,y)  = y-l-+y-2(1+sin28)+ .... (5.14) 

Thus to this order the bubble is an ellipse with its short axis along the flow direction. 
The preceding results can be used to evaluate for y large, the quantities V ,  T and A 

given by ( 4 4 ,  (4.9) and (4.10). The first term in (5.1) for r(8,y) yields 

v = (2a2/pU2) 2(m--p)y4+O(y--2), (5.15) 

A = (2a/p U2)2 (n - ,!3 + sin 2p) y-2 + O ( Y - ~ ) .  (5.16) 

The corresponding result for T can be found similarly. 

6. Slender-body approximation 
The numerical results presented in the preceding sections show that the bubble is 

very slender for p - +n and y - yo (p). This is evident in figure 3 and even in figure 4. 
Therefore we shall use slender-body theory to get an approximate description of the 
flow around the bubble. Then we shall use this flow in the boundary condition (2.2) 
to obtain a differential equation for the bubble surface. By solving this equation 
subject to suitable boundary conditions, we shall obtain an approximation to the 
bubble surface. 

The flow about a slender body can be represented by both uniform and non-uniform 
asymptotic expansions in the slenderness ratio of the body. We shall use only the 
leading term in the non-uniform expansion, which is the flow about a flat plate lying 
along the center line of the body. We denote the half-width of the plate by a, which is 
to be found. Then the plate and its image lie on the y axis with the ends at  y = k a. 
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We need the dimensionless potential function b$(x, y) for flow about this plate, which 
represents a uniform flow in the x direction at infinity. It is readily found, and on the 
plate it is given by 

From (6.1) we find for the speed of the flow along the plate 

b$(O,y) = (az-yz)t, -a Q y < a. (6.1) 

(6.2) @(O, y) = yZ(u2- y y .  

The variables are non-dimensionalized as in 5 2. 

angle condition (2.4) becomes 

In addition the two sides of the bubble must meet at  y = a, so we have 

Let us write the equation of the bubble as x = & ~ ( y ) ,  0 < y Q a. Then the contact- 

~ ~ ( 0 )  = -tan(p-+n). (6.3) 

q(a) = 0. (6.4) 

Now we use (6.2) for q 2  in the boundary condition (2.2)) and also approximate the 
curvature k by -qvv. Then (2.2) becomes 

qyy = -y2(aZ-y2)-1- y, O < y < a .  (6.6) 

Upon integrating (6.5) twice and using (6.3) and (6.4) we obtain 

T ( Y )  = (a2-Y2)(Y- 1) /2-4a(a+y)b3(a+y) 
- Qafa- y) log (a-  y) +a210g 2a+ + (a -  y) tan (,!?- Bn). (6.6) 

To determine the constant a, we shall use the condition that the downward force 
due to surface tension must be balanced by the upward force due to the negative 
pressure at  the end of the bubble y = a. The surface tension exerts the downward 
force 20 while the flow exerts the upward suction force npA2/4 (see Batchelor 1967, 
p. 412, equation (6.5.4)). Here A is the coefficient which occurs when bq5 is written as 
b$ - Ar* cos 40 in terms of polar co-ordinates with origin at the end of the plate. 
Upon equating these two forces we obtain 

~ C T  = npAz/4. (6.7) 

A2 = 4/n. (6.8) 

a = 21% (6.9) 

In terms of the dimensionless variables introduced in 9 2, this becomes 

For the potential function b$ given by (6.1) we see that A = (2a)*, so (6.8) yields 

The result (6.6) for ~ ( y )  with a = 2/n is found to give a fair approximation to the 
bubble surface for /3 - in and y -yo(@), when the bubble is slender. To illustrate this, 
we shall use (6.6) to calculate y0(&r). We set /3 = in and q(0)  = 0 in (6.6) and solve 
for y, obtaining 

yo(4n) = 1-2log2 w = -0.39. (6.10) 

This is in fair agreement with the result yo(&n) = - 0.42 which we found numerically. 
A similar theory can be developed for the flow past a three-dimensional bubble 

without a wall. Then the flow is axisymmetric about the direction of the flow at 
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infinity, which we take to be the x axis. When the bubble is ‘s1enJer’ the flow about 
it is approximately that past a flat circular disk of radius a, which is to be found. By 
proceeding as above we obtain for the profile curve of the bubble ~ ( y ) ,  and for a, the 
dimensionless results 

(6.11) 

a = in. (6.12) 

From (6.11), to find when opposite sides of the bubble just touch at y = 0, we set 
~ ( 0 )  = 0. This yields for y the critical value 

yo = 4 7 ~ ~ ~ -  ?$ = - 0.26. (6.13) 

We shall compare these results with numerical calculations when the calculations are 
completed. 

7. Discussion of results 
It is helpful to introduce the Weber number W = A*(pU2/2~7) which can be found 

from (4.10). In figure 7 the ordinate is W 2 ,  so we see that for each value of $ there is a 
maximum value of the Weber number above which there is no steady solution of the 
kind considered here. When $ = 90” the maximum value is W 2  - 0.12, and it occurs 
at  y - 0.8. On the solution branch to the right of the maximum in figure 7, W 2  
decreases as y increases, while from figure 6, V also decreases as y increases. Thus on 
this right branch V decreases as W decreases, so the solution is probably stable. In  a 
similar way we see that the branch to the left of the maximum is probably unstable. 

The asymptotic analysis of $ 5  shows that as y tends to infinity, the bubble surface 
tends to an arc of a circle of radius 2o./pU2y. As y decreases from infinity, the bubble 
elongates in the direction normal to the flow. For /3 = in, which corresponds to a free 
bubble, the surface becomes elliptical with the axis ratio 1 + &y + O( Y - - ~ ) ,  the long axis 
being normal to the flow direction. To describe the subsequent distortion of the bubble, 
it  is convenient to consider separately the cases $ ,< +n and $ 2 in. 

For /3 < in the two points where the bubble surface touches the wall at  first move 
apart as y decreases. They reach a maximum separation, then get closer together, and 
finally meet when y reaches the critical value yo (p). This behaviour can be seen in the 
bubble profiles shown in figures 2-4, and it is displayed explicitly in figure 8. 

the behaviour is initially similar, but y can be decreased to zero without 
opposite sides of the bubble touching. A t  y = 0 the curvature of the bubble surface 
becomes zero at the two points where it touches the wall. This is because they are 
stagnation points, at  which the pressure in the fluid is the stagnation pressure 
p s  = p m  + $pU2.  The condition y = 0 means that the bubble pressure pa equals p,, so 
the curvature of the surface is zero at  these points. When y is decreased further, to 
negative values, opposite sides of the bubble come closer together until they touch 
at  a negative critical value yo($) < 0. The contact points are away from the wall for 
$ > in, and at  the wall for $ = in, the free bubble case. 

To obtain physically acceptable solutions for y < yo($) we consider first the case 
/3 < an. We assume that in this case the bubble surface will have just one point of 
contact with the wall, a t  which the two ends of the bubble surface meet. If we adjoin 

For $ 2 
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FIGURE 8. Values of the distance Ax between the stagnation points as a function of y for 
four values of 8. 

this extra condition to the previously formulated problem, we cannot expect to find 
a solution when y < yo(/3). This is because we have added one extra condition and no 
extra unknowns. This difficulty can be overcome by not specifying the value of ,4, 
but considering it to be an unknown. This makes sense physically because of the 
invalidity of the usual argument which determines /? to make the interfacial forces 
balance at the contact point. When two surfaces meet there symmetrically, the 
symmetry guarantees a force balance for any /?, 

The problem just posed has already been solved by our previous computations. 
For each /3 < 8n we have found a solution with just one point of contact with the wall 
when y = yo(/3). If y is specified then there is a solution of this kind with j9 given by 
the inverse function 

P = YT1(Y)> Y 3 Yo(@). (7.1) 

As y tends to infinity, it follows from (7.1) that P tends to zero. Then the bubble tends 
to a circle of radius 2 ~ / p U 2 y  tangent to the wall. In figures 5-7 the values of T, V 
and A for this family of bubbles are shown by dashed curves. 

We could have obtained solutions for /3 2 in and y < yo(/3) by using the technique 
presented by Vanden-Broeck & Keller (1980). However we did not do so because the 
pinched bubble consisting of two sub-bubbles is probably unstable. It is likely that the 
two sub-bubbles will separate from one another. 

Finally let us mention the relation of our results to the problem of flow past a bubble 
which is a t  a distance d from a wall. The two parameters d and y characterize such a 
flow and the resulting bubble. For d-tco, the bubble tends to the free bubble corre- 
sponding to our present results with /? = 471. As d decreases for a fixed value of y ,  the 
two stagnation points on the bubble must move toward the end of the bubble nearest 
the wall. They coalesce at  the contact point when the bubble just touches the wall. 
Then the contact angle P is given as a function of y by (7.1) while the bubble shape and 
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the flow are given by our solution corresponding to (7 .1) .  Thus the two extreme cases 
d = 00 and d = 0 of this family of bubbles are given by the present calculations. 

We wish to thank Prof. Lu Ting for some very helpful discussions of this problem 
and Prof. Paul Garabedian for bringing to our a.ttention the work of his former student 
McLeod. This work was supported by the Office of Naval Research, the Army Research 
Office, the Air Force Office of Scientific Research and the National Science Foundation. 
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